

ONLINE ACCESS

Thank you for purchasing a new copy of Introduction to Java Programming, Brief Version,
Tenth Edition. Your textbook includes six months of prepaid access to the book’s Companion
Website. Your textbook includes six months of prepaid access to the book’s Companion Website.
This prepaid subscription provides you with full access to the following student support areas:

• Video Notes are step-by-step video tutorials specifically designed to enhance the programming
concepts presented in this textbook

Use a coin to scratch off the coating and reveal your student access code.
Do not use a knife or other sharp object as it may damage the code.

To access the Introduction to Java Programming, Brief Version, Tenth Edition,
Companion Website for the first time, you will need to register online using a computer with an
Internet connection and a web browser. The process takes just a couple of minutes and only needs
to be completed once.

1.	Go to www.pearsonglobaleditions.com/Liang

2.	 Click on Companion Website.

3.	 Click on the Register button.

4.	 On the registration page, enter your student access code* found beneath the scratch-off panel.
Do not type the dashes. You can use lower - or uppercase.

5.	 Follow the on-screen instructions. If you need help at any time during the online registration
process, simply click the Need Help? icon.

6.	 Once your personal Login Name and Password are confirmed, you can begin using the
Introduction to Introduction to Java Programming, Brief Version Companion Website!

To log in after you have registered:

You only need to register for this Companion Website once. After that, you can log in any time
at www.pearsonglobaleditions.com/Liang by providing your Login Name and Password when
prompted.

*Important: The access code can only be used once. This subscription is valid for six months upon
activation and is not transferable. If this access code has already been revealed, it may no longer
be valid. If this is the case, you can purchase a subscription by going to
www.pearsonglobaleditions.com/Liang and following the on-screen instructions.

Introduction to

Java
Programming

Brief Version

Tenth Edition

Global Edition

Y. Daniel Liang
Armstrong Atlantic State University

Global Edition contributions by

Ming-Jyh Tsai
Fu Jen Catholic University

®

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

A01_LIAN8564_10_GE_FM.indd 1 05/09/14 10:16 am

To Samantha, Michael, and Michelle

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within text.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. Screen shots and icons reprinted
with permission from the Microsoft Corporation. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2015

The rights of Y. Daniel Liang to be identified as the author of this work have been asserted by them in accordance with the Copyright, Designs and
Patents Act 1988.

Authorized adaptation from the United States edition, entitled to Introduction to Java Programming, Brief Version, 10th Edition,
ISBN 978-0-13-359220-7 by Y. Daniel Liang, published by Pearson Education © 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying
in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher
any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by
such owners.

ISBN 10: 1-292-07856-1
ISBN 13: 978-1-292-07856-4

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1
15 14 13 12 11

Typeset in 10/12 Times LT Std by Laserwords Private Ltd
Printed and bound by Courier Kendallville in United States of America

Editorial Director, ECS: Marcia Horton
Head of Learning Assets Acquisition, Global Editions: Laura Dent
Executive Editor: Tracy Johnson (Dunkelberger)
Editorial Assistant: Jenah Blitz-Stoehr
Project Director, Global Editions: Shona Mullen
Assistant Project Editor, Global Editions: Paromita Banerjee
Director of Marketing: Christy Lesko
Marketing Manager: Yez Alayan
Marketing Assistant: Jon Bryant
Director of Program Management: Erin Gregg
Senior Manufacturing Controller, Global Editions: Trudy Kimber
Program Management-Team Lead: Scott Disanno
Program Manager: Carole Snyder

Project Management-Team Lead: Laura Burgess
Project Manager: Robert Engelhardt
Procurement Specialist: Linda Sager
Cover Designer: Lumina Datamatics Ltd
Permissions Supervisor: Michael Joyce
Permissions Administrator: Jenell Forschler
Director, Image Asset Services: Annie Atherton
Manager, Visual Research: Karen Sanatar
Cover Art: © Ints Vikmanis/Shutterstock
Media Project Manager: Renata Butera
Media Producer, Global Editions: Pallavi Pandit
Full-Service Project Management: Laserwords Private Ltd.

A01_LIAN8564_10_GE_FM.indd 2 05/09/14 10:16 am

 3

Dear Reader,

Many of you have provided feedback on earlier editions of this book, and your comments and
suggestions have greatly improved the book. This edition has been substantially enhanced in
presentation, organization, examples, exercises, and supplements. The new edition:

n	 Replaces Swing with JavaFX. JavaFX is a new framework for developing Java GUI pro-
grams. JavaFX greatly simplifies GUI programming and is easier to learn than Swing.

n	 Introduces exception handling, abstract classes, and interfaces before GUI programming
to enable the GUI chapters to be skipped completely if the instructor chooses not to cover
GUI.

n	 Covers introductions to objects and strings earlier in Chapter 4 to enable students to use
objects and strings to develop interesting programs early.

n	 Includes many new interesting examples and exercises to stimulate student interests. More
than 100 additional programming exercises are provided to instructors only on the Com-
panion Website.

Please visit www.pearsonglobaleditions.com/Liang for a complete list of new features as well
as correlations to the previous edition.

The book is fundamentals first by introducing basic programming concepts and techniques
before designing custom classes. The fundamental concepts and techniques of selection
statements, loops, methods, and arrays are the foundation for programming. Building this
strong foundation prepares students to learn object-oriented programming and advanced Java
programming.

This book teaches programming in a problem-driven way that focuses on problem solving
rather than syntax. We make introductory programming interesting by using thought-provok-
ing problems in a broad context. The central thread of early chapters is on problem solving.
Appropriate syntax and library are introduced to enable readers to write programs for solving
the problems. To support the teaching of programming in a problem-driven way, the book
provides a wide variety of problems at various levels of difficulty to motivate students. To
appeal to students in all majors, the problems cover many application areas, including math,
science, business, financial, gaming, animation, and multimedia.

The book is widely used in the introductory programming courses in the universities around
the world. The book is a brief version of Introduction to Java Programming, Comprehensive
Version, Tenth Edition, Global Edition. This version is designed for an introductory pro-
gramming course, commonly known as CS1. It contains the first eighteen chapters in the
comprehensive version and covers fundamentals of programming, object-oriented program-
ming, GUI programming, exception handling, I/O, and recursion. The comprehensive ver-
sion has additional twenty-four chapters that cover data structures, algorithms, concurrency,
parallel programming, networking, internationalization, advanced GUI, database, and Web
programming. The first thirteen chapters of this book are appropriate for preparing the AP
Computer Science exam.

The best way to teach programming is by example, and the only way to learn program-
ming is by doing. Basic concepts are explained by example and a large number of exercises
with various levels of difficulty are provided for students to practice. For our programming
courses, we assign programming exercises after each lecture.

what is new?

fundamentals-first

problem-driven

comprehensive version

brief version

AP Computer Science

examples and exercises

PREFACE

A01_LIAN8564_10_GE_FM.indd 3 05/09/14 10:16 am

4 Preface

Our goal is to produce a text that teaches problem solving and programming in a broad
context using a wide variety of interesting examples. If you have any comments on and sug-
gestions for improving the book, please email me.

Sincerely,

Y. Daniel Liang
y.daniel.liang@gmail.com
www.cs.armstrong.edu/liang
www.pearsonglobaleditions.com/Liang

ACM/IEEE Curricular 2013 and ABET
Course Assessment
The new ACM/IEEE Computer Science Curricular 2013 defines the Body of Knowledge organ-
ized into 18 Knowledge Areas. To help instructors design the courses based on this book, we
provide sample syllabi to identify the Knowledge Areas and Knowledge Units. The sample syl-
labi are for a three semester course sequence and serve as an example for institutional customi-
zation. The sample syllabi are available to instructors at www.pearsonglobaleditions.com/Liang.

Many of our users are from the ABET-accredited programs. A key component of the ABET
accreditation is to identify the weakness through continuous course assessment against the course
outcomes. We provide sample course outcomes for the courses and sample exams for measuring
course outcomes on the instructor Website accessible from www.pearsonglobaleditions.com/Liang.

What’s New in This Edition?
This edition is completely revised in every detail to enhance clarity, presentation, content,
examples, and exercises. The major improvements are as follows:

n	 Updated to Java 8.

n	 Since Swing is replaced by JavaFX, all GUI examples and exercises are revised using
JavaFX.

n	 Lambda expressions are used to simplify coding in JavaFX and threads.

n	 More than 100 additional programming exercises with solutions are provided to the
instructor on the Companion Website. These exercises are not printed in the text.

n	 Math methods are introduced earlier in Chapter 4 to enable students to write code using
math functions.

n	 Strings are introduced earlier in Chapter 4 to enable students to use objects and strings to
develop interesting programs early.

n	 The GUI chapters are moved to after abstract classes and interfaces so that these chapters
can be easily skipped if the instructor chooses not to cover GUI.

n	 Chapters 4, 14, 15, and 16 are brand new chapters.

A01_LIAN8564_10_GE_FM.indd 4 05/09/14 10:16 am

Preface 5

Pedagogical Features
The book uses the following elements to help students get the most from the material:

n	 The Objectives at the beginning of each chapter list what students should learn from the
chapter. This will help them determine whether they have met the objectives after complet-
ing the chapter.

n	 The Introduction opens the discussion with representative problems to give the reader an
overview of what to expect from the chapter.

n	 Key Points highlight the important concepts covered in each section.

n	 Check Points provide review questions to help students track their progress as they read
through the chapter and evaluate their learning.

n	 Problems and Case Studies, carefully chosen and presented in an easy-to-follow style,
teach problem solving and programming concepts. The book uses many small, simple, and
stimulating examples to demonstrate important ideas.

n	 The Chapter Summary reviews the important subjects that students should understand
and remember. It helps them reinforce the key concepts they have learned in the chapter.

n	 Quizzes are accessible online, grouped by sections, for students to do self-test on pro-
gramming concepts and techniques.

n	 Programming Exercises are grouped by sections to provide students with opportunities
to apply the new skills they have learned on their own. The level of difficulty is rated as
easy (no asterisk), moderate (*), hard (**), or challenging (***). The trick of learning pro-
gramming is practice, practice, and practice. To that end, the book provides a great many
exercises. Additionally, more than 100 programming exercises with solutions are provided
to the instructors on the Companion Website. These exercises are not printed in the text.

n	 Notes, Tips, Cautions, and Design Guides are inserted throughout the text to offer valu-
able advice and insight on important aspects of program development.

Note
Provides additional information on the subject and reinforces important concepts.

Tip
Teaches good programming style and practice.

Caution
Helps students steer away from the pitfalls of programming errors.

Design Guide
Provides guidelines for designing programs.

Flexible Chapter Orderings
The book is designed to provide flexible chapter orderings to enable GUI, exception handling,
and recursion to be covered earlier or later. The diagram on the next page shows the chapter
dependencies.

A01_LIAN8564_10_GE_FM.indd 5 05/09/14 10:16 am

6 Preface

Organization of the Book
The chapters in this brief version can be grouped into three parts that, taken together, form a
solid introduction to Java programming. Because knowledge is cumulative, the early chapters
provide the conceptual basis for understanding programming and guide students through
simple examples and exercises; subsequent chapters progressively present Java program-
ming in detail, culminating with the development of comprehensive Java applications. The
appendixes contain a mixed bag of topics, including an introduction to number systems,
bitwise operations, regular expressions, and enumerated types.

Part I: Fundamentals of Programming (Chapters 1–8, 18)

The first part of the book is a stepping stone, preparing you to embark on the journey of learning
Java. You will begin to learn about Java (Chapter 1) and fundamental programming techniques
with primitive data types, variables, constants, assignments, expressions, and operators (Chapter 2),
selection statements (Chapter 3), mathematical functions, characters, and strings (Chapter 4), loops
(Chapter 5), methods (Chapter 6), and arrays (Chapters 7–8). After Chapter 7, you can jump to
Chapter 18 to learn how to write recursive methods for solving inherently recursive problems.

Part II: Object-Oriented Programming (Chapters 9–13, and 17)

This part introduces object-oriented programming. Java is an object-oriented programming
language that uses abstraction, encapsulation, inheritance, and polymorphism to provide
great flexibility, modularity, and reusability in developing software. You will learn program-
ming with objects and classes (Chapters 9–10), class inheritance (Chapter 11), polymorphism

Chapter 1 Introduction to
 Computers, Programs, and
 Java

Chapter 2 Elementary
 Programming

Chapter 4 Mathematical
 Functions, Characters,
 and Strings

Chapter 5 Loops

Chapter 6 Methods

Chapter 8 Multidimensional
 Arrays

Chapter 18 Recursion

Part I: Fundamentals of
 Programming

Chapter 3 Selections

Chapter 9 Objects and Classes

Chapter 17 Binary I/O

Chapter 10 Thinking in Objects

Chapter 11 Inheritance and
 Polymorphism

Chapter 12 Exception
 Handling and Text I/O

Chapter 13 Abstract Classes
 and Interfaces

Chapter 7 Single-Dimensional
 Arrays

Part II: Object-Oriented
 Programming

Chapter 14 JavaFX Basics

Chapter 15 Event-Driven
 Programming and
 Animations

Chapter 16 JavaFX Controls
and Multimedia

Part III: GUI Programming

A01_LIAN8564_10_GE_FM.indd 6 05/09/14 10:16 am

Preface 7

(Chapter 11), exception handling (Chapter 12), abstract classes (Chapter 13), and interfaces
(Chapter 13). Text I/O is introduced in Chapter 12 and binary I/O is discussed in Chapter 17.

Part III: GUI Programming (Chapters 14–16)

JavaFX is a new framework for developing Java GUI programs. It is not only useful for develop-
ing GUI programs, but also an excellent pedagogical tool for learning object-oriented program-
ming. This part introduces Java GUI programming using JavaFX in Chapters 14–16. Major topics
include GUI basics (Chapter 14), container panes (Chapter 14), drawing shapes (Chapter 14),
event-driven programming (Chapter 15), animations (Chapter 15), and GUI controls (Chapter 16),
and playing audio and video (Chapter 16). You will learn the architecture of JavaFX GUI pro-
gramming and use the controls, shapes, panes, image, and video to develop useful applications.

Appendixes

This part of the book covers a mixed bag of topics. Appendix A lists Java keywords. Appendix
B gives tables of ASCII characters and their associated codes in decimal and in hex. Appendix
C shows the operator precedence. Appendix D summarizes Java modifiers and their usage.
Appendix E discusses special floating-point values. Appendix F introduces number systems and
conversions among binary, decimal, and hex numbers. Finally, Appendix G introduces bitwise
operations. Appendix H introduces regular expressions. Appendix I covers enumerated types.

Java Development Tools
You can use a text editor, such as the Windows Notepad or WordPad, to create Java programs
and to compile and run the programs from the command window. You can also use a Java
development tool, such as NetBeans or Eclipse. These tools support an integrated develop-
ment environment (IDE) for developing Java programs quickly. Editing, compiling, building,
executing, and debugging programs are integrated in one graphical user interface. Using these
tools effectively can greatly increase your programming productivity. NetBeans and Eclipse
are easy to use if you follow the tutorials. Tutorials on NetBeans and Eclipse can be found
under Tutorials on the Student Companion Website at www.pearsonglobaleditions.com/Liang.

Student Resource Website
The Student Resource Website www.pearsonglobaleditions.com/Liang provides access to some of
the following resources. Other resources are available using the student access code printed on
the inside front cover of this book. (For students with a used copy of this book, you can purchase
access to the premium student resources through www.pearsonglobaleditions.com/Liang.)

n	 Answers to review questions

n	 Solutions to even-numbered programming exercises

n	 Source code for the examples in the book

n	 Interactive quiz (organized by sections for each chapter)

n	 Supplements

n	 Debugging tips

n	 Algorithm animations

n	 Errata

Instructor Resource Website
The Instructor Resource Website, accessible from www.pearsonglobaleditions.com/Liang, pro-
vides access to the following resources:

n	 Microsoft PowerPoint slides with interactive buttons to view full-color, syntax-highlighted
source code and to run programs without leaving the slides.

IDE tutorials

A01_LIAN8564_10_GE_FM.indd 7 05/09/14 10:16 am

8 Preface

n	 Solutions to all programming exercises. Students will have access to the solutions of even-
numbered programming exercises.

n	 More than 100 additional programming exercises organized by chapters. These exercises
are available only to the instructors. Solutions to these exercises are provided.

n	 Web-based quiz generator. (Instructors can choose chapters to generate quizzes from a
large database of more than two thousand questions.)

n	 Sample exams. Most exams have four parts:

n	 Multiple-choice questions or short-answer questions

n	 Correct programming errors

n	 Trace programs

n	 Write programs

n	 ACM/IEEE Curricula 2013. The new ACM/IEEE Computer Science Curricula 2013
defines the Body of Knowledge organized into 18 Knowledge Areas. To help instructors
design the courses based on this book, we provide sample syllabi to identify the Knowl-
edge Areas and Knowledge Units. The sample syllabi are for a three semester course
sequence and serve as an example for institutional customization. Instructors can access
the syllabi at www.pearsonglobaleditions.com/Liang.

n	 Sample exams with ABET course assessment.

n	 Projects. In general, each project gives a description and asks students to analyze, design,
and implement the project.

Some readers have requested the materials from the Instructor Resource Website. Please
understand that these are for instructors only. Such requests will not be answered.

VideoNotes
We are excited about the new VideoNotes feature that is found in this new edition. These
videos provide additional help by presenting examples of key topics and showing how to
solve problems completely, from design through coding. VideoNotes are available from
www.pearsonglobaleditions.com/Liang.

Algorithm Animations
We have provided numerous animations for algorithms. These are valuable pedagogical tools
to demonstrate how algorithms work. Algorithm animations can be accessed from the Com-
panion Website.

VideoNote

Animation

A01_LIAN8564_10_GE_FM.indd 8 05/09/14 10:16 am

Preface 9

Acknowledgments
I would like to thank Armstrong Atlantic State University for enabling me to teach what I
write and for supporting me in writing what I teach. Teaching is the source of inspiration for
continuing to improve the book. I am grateful to the instructors and students who have offered
comments, suggestions, bug reports, and praise.

This book has been greatly enhanced thanks to outstanding reviews for this and previous editions.
The reviewers are: Elizabeth Adams (James Madison University), Syed Ahmed (North Georgia
College and State University), Omar Aldawud (Illinois Institute of Technology), Stefan Andrei
(Lamar University), Yang Ang (University of Wollongong, Australia), Kevin Bierre (Rochester
Institute of Technology), David Champion (DeVry Institute), James Chegwidden (Tarrant County
College), Anup Dargar (University of North Dakota), Charles Dierbach (Towson University),
Frank Ducrest (University of Louisiana at Lafayette), Erica Eddy (University of Wisconsin
at Parkside), Deena Engel (New York University), Henry A. Etlinger (Rochester Institute of
Technology), James Ten Eyck (Marist College), Myers Foreman (Lamar University), Olac
Fuentes (University of Texas at El Paso), Edward F. Gehringer (North Carolina State University),
Harold Grossman (Clemson University), Barbara Guillot (Louisiana State University), Stuart
Hansen (University of Wisconsin, Parkside), Dan Harvey (Southern Oregon University), Ron
Hofman (Red River College, Canada), Stephen Hughes (Roanoke College), Vladan Jovanovic ​
(Georgia Southern University), Edwin Kay (Lehigh University), Larry King (University of
Texas at Dallas), Nana Kofi (Langara College, Canada), George Koutsogiannakis (Illinois
Institute of Technology), Roger Kraft (Purdue University at Calumet), Norman Krumpe (Miami
University), Hong Lin (DeVry Institute), Dan Lipsa (Armstrong Atlantic State University),
James Madison (Rensselaer Polytechnic Institute), Frank Malinowski (Darton College),
Tim Margush (University of Akron), Debbie Masada (Sun Microsystems), Blayne Mayfield
(Oklahoma State University), John McGrath (J.P. McGrath Consulting), Hugh McGuire (Grand
Valley State), Shyamal Mitra (University of Texas at Austin), Michel Mitri (James Madison
University), Kenrick Mock (University of Alaska Anchorage), Frank Murgolo (California
State University, Long Beach), Jun Ni (University of Iowa), Benjamin Nystuen (University of
Colorado at Colorado Springs), Maureen Opkins (CA State University, Long Beach), Gavin
Osborne (University of Saskatchewan), Kevin Parker (Idaho State University), Dale Parson
(Kutztown University), Mark Pendergast (Florida Gulf Coast University), Richard Povinelli
(Marquette University), Roger Priebe (University of Texas at Austin), Mary Ann Pumphrey (De
Anza Junior College), Pat Roth (Southern Polytechnic State University), Amr Sabry (Indiana
University), Ben Setzer (Kennesaw State University), Carolyn Schauble (Colorado State
University), David Scuse (University of Manitoba), Ashraf Shirani (San Jose State University),
Daniel Spiegel (Kutztown University), Joslyn A. Smith (Florida Atlantic University) , Lixin
Tao (Pace University), Ronald F. Taylor (Wright State University), Russ Tront (Simon Fraser
University), Deborah Trytten (University of Oklahoma), Michael Verdicchio (Citadel), Kent
Vidrine (George Washington University), and Bahram Zartoshty (California State University
at Northridge).

It is a great pleasure, honor, and privilege to work with Pearson. I would like to thank Tracy
Johnson and her colleagues Marcia Horton, Yez Alayan, Carole Snyder, Scott Disanno, Bob
Engelhardt, Haseen Khan, and their colleagues for organizing, producing, and promoting this
project.

As always, I am indebted to my wife, Samantha, for her love, support, and encouragement.
Pearson would like to thank and acknowledge Lee Yee Lien (Multimedia University) and

Vincent Chung Shen Hung (Wawasan Open University) for reviewing the Global Edition.

A01_LIAN8564_10_GE_FM.indd 9 05/09/14 10:16 am

10

	 1	 Introduction to Computers, Programs,
		 and Java	 19

	2	 Elementary Programming	 51

	 3	 Selections	 93

	4	 Mathematical Functions, Characters,
		 and Strings	 137

	 5	 Loops	 175

	6	 Methods	 221

	7	 Single-Dimensional Arrays	 263

	8	 Multidimensional Arrays	 305

	9	 Objects and Classes	 339

	10	 Object-Oriented Thinking	 383

	11	 Inheritance and Polymorphism	 427

	12	 Exception Handling and Text I/O	 467

	13	 Abstract Classes and Interfaces	 513

	14	 JavaFX Basics	 553

	15	 Event-Driven Programming
		 and Animations	 603

Brief Contents
	16	 JavaFX UI Controls and Multimedia	 647

	17	 Binary I/O	 695

	18	 Recursion	 723

Appendixes
	A	 Java Keywords	 755

	B	T he ASCII Character Set	 758

	C	O perator Precedence Chart	 760

	D	 Java Modifiers	 762

	 E	S pecial Floating-Point Values	 764

	 F	N umber Systems	 765

	G	 Bitwise Operatoirns	 769

	H	R egular Expressions	 770

	 I	E numerated Types	 775

Index	 781

A01_LIAN8564_10_GE_FM.indd 10 05/09/14 10:16 am

 11

	C hapter 1	 Introduction to Computers, Programs,
		 and Java	 19
	 1.1	 Introduction	 20
	 1.2	 What Is a Computer?	 20
	 1.3	 Programming Languages	 25
	 1.4	 Operating Systems	 27
	 1.5	 Java, the World Wide Web, and Beyond	 28
	 1.6	 The Java Language Specification, API, JDK, and IDE	 29
	 1.7	 A Simple Java Program	 30
	 1.8	 Creating, Compiling, and Executing a Java Program	 33
	 1.9	 Programming Style and Documentation	 36
	 1.10	 Programming Errors	 38
	 1.11	 Developing Java Programs Using NetBeans	 41
	 1.12	 Developing Java Programs Using Eclipse	 43

	Chapter 2	 Elementary Programming	 51
	 2.1	 Introduction	 52
	 2.2	 Writing a Simple Program	 52
	 2.3	 Reading Input from the Console	 55
	 2.4	 Identifiers	 57
	 2.5	 Variables	 58
	 2.6	 Assignment Statements and Assignment Expressions	 59
	 2.7	 Named Constants	 61
	 2.8	 Naming Conventions	 62
	 2.9	 Numeric Data Types and Operations	 62
	 2.10	 Numeric Literals	 66
	 2.11	 Evaluating Expressions and Operator Precedence	 68
	 2.12	 Case Study: Displaying the Current Time	 70
	 2.13	 Augmented Assignment Operators	 72
	 2.14	 Increment and Decrement Operators	 73
	 2.15	 Numeric Type Conversions	 74
	 2.16	 Software Development Process	 77
	 2.17	 Case Study: Counting Monetary Units	 81
	 2.18	 Common Errors and Pitfalls	 83

	Chapter 3	 Selections	 93
	 3.1	 Introduction	 94
	 3.2	 boolean Data Type	 94
	 3.3	 if Statements	 96
	 3.4	 Two-Way if-else Statements	 98
	 3.5	 Nested if and Multi-Way if-else Statements	 99
	 3.6	 Common Errors and Pitfalls	 101
	 3.7	 Generating Random Numbers	 105
	 3.8	 Case Study: Computing Body Mass Index	 107
	 3.9	 Case Study: Computing Taxes	 108
	 3.10	 Logical Operators	 111
	 3.11	 Case Study: Determining Leap Year	 115
	 3.12	 Case Study: Lottery	 116
	 3.13	 switch Statements	 118
	 3.14	 Conditional Expressions	 121

Contents

A01_LIAN8564_10_GE_FM.indd 11 05/09/14 10:16 am

12 Contents

	 3.15	 Operator Precedence and Associativity	 122
	 3.16	 Debugging	 124

	Chapter 4	 Mathematical Functions, Characters,
		 and Strings	 137
	 4.1	 Introduction	 138
	 4.2	 Common Mathematical Functions	 138
	 4.3	 Character Data Type and Operations	 143
	 4.4	 The String Type	 148
	 4.5	 Case Studies	 157
	 4.6	 Formatting Console Output	 163

	Chapter 5	 Loops	 175
	 5.1	 Introduction	 176
	 5.2	 The while Loop	 176
	 5.3	 The do-while Loop	 186
	 5.4	 The for Loop	 188
	 5.5	 Which Loop to Use?	 192
	 5.6	 Nested Loops	 194
	 5.7	 Minimizing Numeric Errors	 196
	 5.8	 Case Studies	 197
	 5.9	 Keywords break and continue	 202
	 5.10	 Case Study: Checking Palindromes	 205
	 5.11	 Case Study: Displaying Prime Numbers	 206

	Chapter 6	 Methods	 221
	 6.1	 Introduction	 222
	 6.2	 Defining a Method	 222
	 6.3	 Calling a Method	 224
	 6.4	 void Method Example	 227
	 6.5	 Passing Arguments by Values	 230
	 6.6	 Modularizing Code	 233
	 6.7	 Case Study: Converting Hexadecimals to Decimals	 235
	 6.8	 Overloading Methods	 237
	 6.9	 The Scope of Variables	 240
	 6.10	 Case Study: Generating Random Characters	 241
	 6.11	 Method Abstraction and Stepwise Refinement	 243

	Chapter 7	 Single-Dimensional Arrays	 263
	 7.1	 Introduction	 264
	 7.2	 Array Basics	 264
	 7.3	 Case Study: Analyzing Numbers	 271
	 7.4	 Case Study: Deck of Cards	 272
	 7.5	 Copying Arrays	 274
	 7.6	 Passing Arrays to Methods	 275
	 7.7	 Returning an Array from a Method	 278
	 7.8	 Case Study: Counting the Occurrences of Each Letter	 279
	 7.9	 Variable-Length Argument Lists	 282
	 7.10	 Searching Arrays	 283
	 7.11	 Sorting Arrays	 287
	 7.12	 The Arrays Class	 288
	 7.13	 Command-Line Arguments	 290

	Chapter 8	 Multidimensional Arrays	 305
	 8.1	 Introduction	 306
	 8.2	 Two-Dimensional Array Basics	 306

A01_LIAN8564_10_GE_FM.indd 12 05/09/14 10:16 am

Contents 13

	 8.3	 Processing Two-Dimensional Arrays	 309
	 8.4	 Passing Two-Dimensional Arrays to Methods	 311
	 8.5	 Case Study: Grading a Multiple-Choice Test	 312
	 8.6	 Case Study: Finding the Closest Pair	 314
	 8.7	 Case Study: Sudoku	 316
	 8.8	 Multidimensional Arrays	 319

	Chapter 9	 Objects and Classes	 339
	 9.1	 Introduction	 340
	 9.2	 Defining Classes for Objects	 340
	 9.3	 Example: Defining Classes and Creating Objects	 342
	 9.4	 Constructing Objects Using Constructors	 347
	 9.5	 Accessing Objects via Reference Variables	 348
	 9.6	 Using Classes from the Java Library	 352
	 9.7	 Static Variables, Constants, and Methods	 355
	 9.8	 Visibility Modifiers	 360
	 9.9	 Data Field Encapsulation	 362
	 9.10	 Passing Objects to Methods	 365
	 9.11	 Array of Objects	 369
	 9.12	 Immutable Objects and Classes	 371
	 9.13	 The Scope of Variables	 373
	 9.14	 The this Reference	 374

	Chapter 10	 Object-Oriented Thinking	 383
	 10.1	 Introduction	 384
	 10.2	 Class Abstraction and Encapsulation	 384
	 10.3	 Thinking in Objects	 388
	 10.4	 Class Relationships	 391
	 10.5	 Case Study: Designing the Course Class	 394
	 10.6	 Case Study: Designing a Class for Stacks	 396
	 10.7	 Processing Primitive Data Type Values as Objects	 398
	 10.8	 Automatic Conversion between Primitive Types
		 and Wrapper Class Types	 401
	 10.9	 The BigInteger and BigDecimal Classes	 402
	 10.10	 The String Class	 404
	 10.11	 The StringBuilder and StringBuffer Classes	 410

	Chapter 11	 Inheritance and Polymorphism	 427
	 11.1	 Introduction	 428
	 11.2	 Superclasses and Subclasses	 428
	 11.3	 Using the super Keyword	 434
	 11.4	 Overriding Methods	 437
	 11.5	 Overriding vs. Overloading	 438
	 11.6	 The Object Class and Its toString() Method	 440
	 11.7	 Polymorphism	 441
	 11.8	 Dynamic Binding	 442
	 11.9	 Casting Objects and the instanceof Operator	 445
	 11.10	 The Object’s equals Method	 449
	 11.11	 The ArrayList Class	 450
	 11.12	 Useful Methods for Lists	 456
	 11.13	 Case Study: A Custom Stack Class	 457
	 11.14	 The protected Data and Methods	 458
	 11.15	 Preventing Extending and Overriding	 460

	Chapter 12	 Exception Handling and Text I/O	 467
	 12.1	 Introduction	 468
	 12.2	 Exception-Handling Overview	 468

A01_LIAN8564_10_GE_FM.indd 13 05/09/14 10:16 am

14 Contents

	 12.3	 Exception Types	 473
	 12.4	 More on Exception Handling	 476
	 12.5	 The finally Clause	 484
	 12.6	 When to Use Exceptions	 485
	 12.7	 Rethrowing Exceptions	 486
	 12.8	 Chained Exceptions	 487
	 12.9	 Defining Custom Exception Classes	 488
	 12.10	 The File Class	 491
	 12.11	 File Input and Output	 494
	 12.12	 Reading Data from the Web	 500
	 12.13	 Case Study: Web Crawler	 502

	Chapter 13	 Abstract Classes and Interfaces	 513
	 13.1	 Introduction	 514
	 13.2	 Abstract Classes	 514
	 13.3	 Case Study: the Abstract Number Class	 519
	 13.4	 Case Study: Calendar and GregorianCalendar	 521
	 13.5	 Interfaces	 524
	 13.6	 The Comparable Interface	 527
	 13.7	 The Cloneable Interface	 531
	 13.8	 Interfaces vs. Abstract Classes	 535
	 13.9	 Case Study: The Rational Class	 538
	 13.10	 Class Design Guidelines	 543

	Chapter 14	 JavaFX Basics	 553
	 14.1	 Introduction	 554
	 14.2	 JavaFX vs Swing and AWT	 554
	 14.3	 The Basic Structure of a JavaFX Program	 554
	 14.4	 Panes, UI Controls, and Shapes	 557
	 14.5	 Property Binding	 560
	 14.6	 Common Properties and Methods for Nodes	 563
	 14.7	 The Color Class	 564
	 14.8	 The Font Class	 565
	 14.9	 The Image and ImageView Classes	 567
	 14.10	 Layout Panes	 570
	 14.11	 Shapes	 578
	 14.12	 Case Study: The ClockPane Class	 590

	Chapter 15	 Event-Driven Programming
		 and Animations	 603
	 15.1	 Introduction	 604
	 15.2	 Events and Event Sources	 606
	 15.3	 Registering Handlers and Handling Events	 607
	 15.4	 Inner Classes	 611
	 15.5	 Anonymous Inner Class Handlers	 612
	 15.6	 Simplifying Event Handling Using Lambda Expressions	 615
	 15.7	 Case Study: Loan Calculator	 618
	 15.8	 Mouse Events	 620
	 15.9	 Key Events	 621
	 15.10	 Listeners for Observable Objects	 624
	 15.11	 Animation	 626
	 15.12	 Case Study: Bouncing Ball	 634

	Chapter 16	 JavaFX UI Controls and Multimedia	 647
	 16.1	 Introduction	 648
	 16.2	 Labeled and Label	 648

A01_LIAN8564_10_GE_FM.indd 14 05/09/14 10:16 am

Contents 15

	 16.3	 Button	 650
	 16.4	 CheckBox	 652
	 16.5	 RadioButton	 655
	 16.6	 TextField	 657
	 16.7	 TextArea	 659
	 16.8	 ComboBox	 662
	 16.9	 ListView	 665
	 16.10	 ScrollBar	 669
	 16.11	 Slider	 672
	 16.12	 Case Study: Developing a Tic-Tac-Toe Game	 675
	 16.13	 Video and Audio	 680
	 16.14	 Case Study: National Flags and Anthems	 683

	Chapter 17	 Binary I/O	 695
	 17.1	 Introduction	 696
	 17.2	 How Is Text I/O Handled in Java?	 696
	 17.3	 Text I/O vs. Binary I/O	 697
	 17.4	 Binary I/O Classes	 698
	 17.5	 Case Study: Copying Files	 709
	 17.6	 Object I/O	 710
	 17.7	 Random-Access Files	 715

	Chapter 18	 Recursion	 723
	 18.1	 Introduction	 724
	 18.2	 Case Study: Computing Factorials	 724
	 18.3	 Case Study: Computing Fibonacci Numbers	 727
	 18.4	 Problem Solving Using Recursion	 730
	 18.5	 Recursive Helper Methods	 732
	 18.6	 Case Study: Finding the Directory Size	 735
	 18.7	 Case Study: Tower of Hanoi	 737
	 18.8	 Case Study: Fractals	 740
	 18.9	 Recursion vs. Iteration	 744
	 18.10	 Tail Recursion	 745

Appendixes

	 Appendix A	 Java Keywords	 755

	A ppendix B	 The ASCII Character Set	 758

	A ppendix C	 Operator Precedence Chart	 760

	A ppendix D	 Java Modifiers	 762

	A ppendix E	 Special Floating-Point Values	 764

	A ppendix F	 Number Systems	 765

	A ppendix G	 Bitwise Operations	 769

	Appendix H	 Regular Expressions	 770

	A ppendix I	 Enumerated Types	 775

Index	 781

A01_LIAN8564_10_GE_FM.indd 15 05/09/14 10:16 am

16

Chapter 1	 Introduction to Computers, Programs,
		 and Java	 19

Your first Java program	 30
Compile and run a Java program	 35
NetBeans brief tutorial	 41
Eclipse brief tutorial	 43

Chapter 2	 Elementary Programming	 51
Obtain input	 55
Use operators / and %	 70
Software development process	 77
Compute loan payments	 78
Compute BMI	 90

Chapter 3	 Selections	 93
Program addition quiz	 95
Program subtraction quiz	 105
Use multi-way if-else statements	 108
Sort three integers	 128
Check point location	 130

Chapter 4	� Mathematical Functions,
Characters, and Strings	 137
Introduce math functions	 138
Introduce strings and objects	 148
Convert hex to decimal	 161
Compute great circle distance	 169

Chapter 5	 Loops	 175
Guess a number	 179
Multiple subtraction quiz	 182
Minimize numeric errors	 196
Display loan schedule	 212
Sum a series	 213

Chapter 6	 Methods	 221
Define/invoke max method	 224
Use void method	 227
Modularize code	 233
Stepwise refinement	 243
Reverse an integer	 252
Estimate p	 255

Chapter 7	 Single-Dimensional Arrays	 263
Random shuffling	 268
Deck of cards	 272
Selection sort	 287
Command-line arguments	 290

VideoNotes
Locations of VideoNotes
http://www.pearsonglobaleditions.com/Liang

Coupon collector’s problem	 299
Consecutive four	 301

Chapter 8	 Multidimensional Arrays	 305
Find the row with the largest sum	 310
Grade multiple-choice test	 312
Sudoku	 316
Multiply two matrices	 325
Even number of 1s	 332

Chapter 9	 Objects and Classes	 339
Define classes and objects	 340
Use classes	 352
Static vs. instance	 355
Data field encapsulation	 362
The Fan class	 380

Chapter 10	 Object-Oriented Thinking	 383
The Loan class	 385
The BMI class	 388
The StackOfIntegers class	 396
Process large numbers	 402
The String class	 404
The MyPoint class	 418

Chapter 11	 Inheritance and Polymorphism	 427
Geometric class hierarchy	 428
Polymorphism and dynamic binding demo	 442
The ArrayList class	 450
The MyStack class	 457
New Account class	 464

Chapter 12	 Exception Handling and Text I/O	 467
Exception-handling advantages	 468
Create custom exception classes	 488
Write and read data	 494
HexFormatException	 507

Chapter 13	 Abstract Classes and Interfaces	 513
Abstract GeometricObject class	 514
Calendar and GregorianCalendar classes	 521
The concept of interface	 524
Redesign the Rectangle class	 548

Chapter 14	 JavaFX Basics	 553
Understand property binding	 560
Use Image and ImageView	 567
Use layout panes	 570
Use shapes	 578

VideoNote

A01_LIAN8564_10_GE_FM.indd 16 05/09/14 10:16 am

VideoNotes 17

Display a tictactoe board	 596
Display a bar chart	 598

Chapter 15	 Event-Driven Programming
		 and Animations	 603

Handler and its registration	 610
Anonymous handler	 613
Move message using the mouse	 620
Animate a rising flag	 626
Flashing text	 632
Simple calculator	 639
Check mouse point location	 640
Display a running fan	 643

Chapter 16	 JavaFX UI Controls and Multimedia	 647
Use ListView	 665
Use Slider	 672

TicTacToe	 675
Use Media, MediaPlayer, and MediaView	 680
Audio and image	 684
Use radio buttons and text fields	 687
Set fonts	 689

Chapter 17	 Binary I/O	 695
Copy file	 709
Object I/O	 711
Split a large file	 720

Chapter 18	 Recursion	 723
Binary search	 734
Directory size	 735
Fractal (Sierpinski triangle)	 740
Search a string in a directory	 751
Recursive tree	 754

A01_LIAN8564_10_GE_FM.indd 17 05/09/14 10:16 am

A01_LIAN8564_10_GE_FM.indd 18 05/09/14 10:16 am

Introduction
to Computers,
Programs,
and Java

Objectives
n	 To understand computer basics, programs, and operating systems

(§§1.2–1.4).

n	 To describe the relationship between Java and the World Wide Web
(§1.5).

n	 To understand the meaning of Java language specification, API, JDK,
and IDE (§1.6).

n	 To write a simple Java program (§1.7).

n	 To display output on the console (§1.7).

n	 To explain the basic syntax of a Java program (§1.7).

n	 To create, compile, and run Java programs (§1.8).

n	 To use sound Java programming style and document programs properly
(§1.9).

n	 To explain the differences between syntax errors, runtime errors, and
logic errors (§1.10).

n	 To develop Java programs using NetBeans (§1.11).

n	 To develop Java programs using Eclipse (§1.12).

CHAPTER

1

M01_LIAN8564_10_GE_C01.indd 19 28/08/14 5:07 pm

20 Chapter 1   Introduction to Computers, Programs, and Java

1.1  Introduction
The central theme of this book is to learn how to solve problems by writing a program.

This book is about programming. So, what is programming? The term programming means to
create (or develop) software, which is also called a program. In basic terms, software contains
the instructions that tell a computer—or a computerized device—what to do.

Software is all around you, even in devices that you might not think would need it. Of
course, you expect to find and use software on a personal computer, but software also plays a
role in running airplanes, cars, cell phones, and even toasters. On a personal computer, you use
word processors to write documents, Web browsers to explore the Internet, and e-mail pro-
grams to send and receive messages. These programs are all examples of software. Software
developers create software with the help of powerful tools called programming languages.

This book teaches you how to create programs by using the Java programming language.
There are many programming languages, some of which are decades old. Each language
was invented for a specific purpose—to build on the strengths of a previous language, for
example, or to give the programmer a new and unique set of tools. Knowing that there are
so many programming languages available, it would be natural for you to wonder which
one is best. But, in truth, there is no “best” language. Each one has its own strengths and
weaknesses. Experienced programmers know that one language might work well in some
situations, whereas a different language may be more appropriate in other situations. For this
reason, seasoned programmers try to master as many different programming languages as
they can, giving them access to a vast arsenal of software-development tools.

If you learn to program using one language, you should find it easy to pick up other languages.
The key is to learn how to solve problems using a programming approach. That is the main
theme of this book.

You are about to begin an exciting journey: learning how to program. At the outset, it is
helpful to review computer basics, programs, and operating systems. If you are already familiar
with such terms as CPU, memory, disks, operating systems, and programming languages, you
may skip Sections 1.2–1.4.

1.2  What Is a Computer?
A computer is an electronic device that stores and processes data.

A computer includes both hardware and software. In general, hardware comprises the visible,
physical elements of the computer, and software provides the invisible instructions that control
the hardware and make it perform specific tasks. Knowing computer hardware isn’t essential
to learning a programming language, but it can help you better understand the effects that
a program’s instructions have on the computer and its components. This section introduces
computer hardware components and their functions.

A computer consists of the following major hardware components (Figure 1.1):

	 n	 A central processing unit (CPU)

	 n	 Memory (main memory)

	 n	 Storage devices (such as disks and CDs)

	 n	 Input devices (such as the mouse and keyboard)

	 n	 Output devices (such as monitors and printers)

	 n	 Communication devices (such as modems and network interface cards)

A computer’s components are interconnected by a subsystem called a bus. You can think
of a bus as a sort of system of roads running among the computer’s components; data and
power travel along the bus from one part of the computer to another. In personal computers,

Key
Point

what is programming?
programming

program

Key
Point

hardware
software

bus

M01_LIAN8564_10_GE_C01.indd 20 28/08/14 5:07 pm

1.2  What Is a Computer? 21

the bus is built into the computer’s motherboard, which is a circuit case that connects all of
the parts of a computer together.

1.2.1  Central Processing Unit
The central processing unit (CPU) is the computer’s brain. It retrieves instructions from
memory and executes them. The CPU usually has two components: a control unit and an
arithmetic/logic unit. The control unit controls and coordinates the actions of the other
components. The arithmetic/logic unit performs numeric operations (addition, subtraction,
multiplication, division) and logical operations (comparisons).

Today’s CPUs are built on small silicon semiconductor chips that contain millions of tiny
electric switches, called transistors, for processing information.

Every computer has an internal clock, which emits electronic pulses at a constant rate.
These pulses are used to control and synchronize the pace of operations. A higher clock speed
enables more instructions to be executed in a given period of time. The unit of measurement of
clock speed is the hertz (Hz), with 1 hertz equaling 1 pulse per second. In the 1990s, computers
measured clocked speed in megahertz (MHz), but CPU speed has been improving continuously;
the clock speed of a computer is now usually stated in gigahertz (GHz). Intel’s newest proces-
sors run at about 3 GHz.

CPUs were originally developed with only one core. The core is the part of the processor
that performs the reading and executing of instructions. In order to increase CPU processing
power, chip manufacturers are now producing CPUs that contain multiple cores. A multicore
CPU is a single component with two or more independent cores. Today’s consumer comput-
ers typically have two, three, and even four separate cores. Soon, CPUs with dozens or even
hundreds of cores will be affordable.

1.2.2  Bits and Bytes
Before we discuss memory, let’s look at how information (data and programs) are stored in
a computer.

A computer is really nothing more than a series of switches. Each switch exists in two
states: on or off. Storing information in a computer is simply a matter of setting a sequence of
switches on or off. If the switch is on, its value is 1. If the switch is off, its value is 0. These 0s
and 1s are interpreted as digits in the binary number system and are called bits (binary digits).

The minimum storage unit in a computer is a byte. A byte is composed of eight bits. A
small number such as 3 can be stored as a single byte. To store a number that cannot fit into a
single byte, the computer uses several bytes.

Data of various kinds, such as numbers and characters, are encoded as a series of bytes.
As a programmer, you don’t need to worry about the encoding and decoding of data, which
the computer system performs automatically, based on the encoding scheme. An encoding
scheme is a set of rules that govern how a computer translates characters, numbers, and sym-
bols into data the computer can actually work with. Most schemes translate each character

motherboard

CPU

speed

hertz

megahertz
gigahertz

core

bits

byte

encoding scheme

Figure 1.1  A computer consists of a CPU, memory, storage devices, input devices, output
devices, and communication devices.

Memory

e.g., Disk, CD,
and Tape

e.g., Modem
and NIC

e.g., Keyboard,
Mouse

e.g., Monitor,
Printer

CPU

Bus

Storage
Devices

Communication
Devices

Input
Devices

Output
Devices

M01_LIAN8564_10_GE_C01.indd 21 28/08/14 5:07 pm

22 Chapter 1   Introduction to Computers, Programs, and Java

into a predetermined string of bits. In the popular ASCII encoding scheme, for example, the
character C is represented as 01000011 in one byte.

A computer’s storage capacity is measured in bytes and multiples of the byte, as follows:

	 n	 A kilobyte (KB) is about 1,000 bytes.

	 n	 A megabyte (MB) is about 1 million bytes.

	 n	 A gigabyte (GB) is about 1 billion bytes.

	 n	 A terabyte (TB) is about 1 trillion bytes.

A typical one-page word document might take 20 KB. Therefore, 1 MB can store 50 pages
of documents and 1 GB can store 50,000 pages of documents. A typical two-hour high-
resolution movie might take 8 GB, so it would require 160 GB to store 20 movies.

1.2.3  Memory
A computer’s memory consists of an ordered sequence of bytes for storing programs as well as
data that the program is working with. You can think of memory as the computer’s work area
for executing a program. A program and its data must be moved into the computer’s memory
before they can be executed by the CPU.

Every byte in the memory has a unique address, as shown in Figure 1.2. The address is
used to locate the byte for storing and retrieving the data. Since the bytes in the memory can
be accessed in any order, the memory is also referred to as random-access memory (RAM).

kilobyte (KB)

megabyte (MB)

gigabyte (GB)

terabyte (TB)

memory

unique address

RAM

Figure 1.2  Memory stores data and program instructions in uniquely addressed memory
locations.

01000011
01110010
01100101
01110111
00000011

Encoding for character ‘C’
Encoding for character ‘r’
Encoding for character ‘e’
Encoding for character ‘w’
Encoding for number 3

2000
2001
2002
2003
2004

Memory address Memory content

Today’s personal computers usually have at least 4 gigabyte of RAM, but they more com-
monly have 6 to 8 GB installed. Generally speaking, the more RAM a computer has, the faster
it can operate, but there are limits to this simple rule of thumb.

A memory byte is never empty, but its initial content may be meaningless to your program.
The current content of a memory byte is lost whenever new information is placed in it.

Like the CPU, memory is built on silicon semiconductor chips that have millions of transis-
tors embedded on their surface. Compared to CPU chips, memory chips are less complicated,
slower, and less expensive.

1.2.4  Storage Devices
A computer’s memory (RAM) is a volatile form of data storage: any information that has
been stored in memory (i.e., saved) is lost when the system’s power is turned off. Programs
and data are permanently stored on storage devices and are moved, when the computer storage devices

M01_LIAN8564_10_GE_C01.indd 22 28/08/14 5:07 pm

1.2  What Is a Computer? 23

actually uses them, to memory, which operates at much faster speeds than permanent storage
devices can.

There are three main types of storage devices:

	 n	 Magnetic disk drives

	 n	 Optical disc drives (CD and DVD)

	 n	 USB flash drives

Drives are devices for operating a medium, such as disks and CDs. A storage medium
physically stores data and program instructions. The drive reads data from the medium and
writes data onto the medium.

Disks
A computer usually has at least one hard disk drive. Hard disks are used for permanently stor-
ing data and programs. Newer computers have hard disks that can store from 500 gigabytes to
1 terabytes of data. Hard disk drives are usually encased inside the computer, but removable
hard disks are also available.

CDs and DVDs
CD stands for compact disc. There are two types of CD drives: CD-R and CD-RW. A CD-R is
for read-only permanent storage; the user cannot modify its contents once they are recorded.
A CD-RW can be used like a hard disk; that is, you can write data onto the disc, and then
overwrite that data with new data. A single CD can hold up to 700 MB. Most new PCs are
equipped with a CD-RW drive that can work with both CD-R and CD-RW discs.

DVD stands for digital versatile disc or digital video disc. DVDs and CDs look alike, and
you can use either to store data. A DVD can hold more information than a CD; a standard
DVD’s storage capacity is 4.7 GB. Like CDs, there are two types of DVDs: DVD-R (read-
only) and DVD-RW (rewritable).

USB Flash Drives
Universal serial bus (USB) connectors allow the user to attach many kinds of peripheral
devices to the computer. You can use a USB to connect a printer, digital camera, mouse,
external hard disk drive, and other devices to the computer.

A USB flash drive is a device for storing and transporting data. A flash drive is small—
about the size of a pack of gum. It acts like a portable hard drive that can be plugged into your
computer’s USB port. USB flash drives are currently available with up to 256 GB storage
capacity.

1.2.5  Input and Output Devices
Input and output devices let the user communicate with the computer. The most common input
devices are keyboards and mice. The most common output devices are monitors and printers.

The Keyboard
A keyboard is a device for entering input. Compact keyboards are available without a numeric
keypad.

Function keys are located across the top of the keyboard and are prefaced with the letter F.
Their functions depend on the software currently being used.

A modifier key is a special key (such as the Shift, Alt, and Ctrl keys) that modifies the nor-
mal action of another key when the two are pressed simultaneously.

The numeric keypad, located on the right side of most keyboards, is a separate set of keys
styled like a calculator to use for entering numbers quickly.

Arrow keys, located between the main keypad and the numeric keypad, are used to move
the mouse pointer up, down, left, and right on the screen in many kinds of programs.

drive

hard disk

CD-R

CD-RW

DVD

function key

modifier key

numeric keypad

arrow keys

M01_LIAN8564_10_GE_C01.indd 23 28/08/14 5:07 pm

24 Chapter 1   Introduction to Computers, Programs, and Java

The Insert, Delete, Page Up, and Page Down keys are used in word processing and other
programs for inserting text and objects, deleting text and objects, and moving up or down
through a document one screen at a time.

The Mouse
A mouse is a pointing device. It is used to move a graphical pointer (usually in the shape of
an arrow) called a cursor around the screen or to click on-screen objects (such as a button) to
trigger them to perform an action.

The Monitor
The monitor displays information (text and graphics). The screen resolution and dot pitch
determine the quality of the display.

The screen resolution specifies the number of pixels in horizontal and vertical dimensions
of the display device. Pixels (short for “picture elements”) are tiny dots that form an image on
the screen. A common resolution for a 17-inch screen, for example, is 1,024 pixels wide and
768 pixels high. The resolution can be set manually. The higher the resolution, the sharper
and clearer the image is.

The dot pitch is the amount of space between pixels, measured in millimeters. The smaller
the dot pitch, the sharper the display.

1.2.6  Communication Devices
Computers can be networked through communication devices, such as a dial-up modem
(modulator/demodulator), a DSL or cable modem, a wired network interface card, or a wire-
less adapter.

	 n	 A dial-up modem uses a phone line and can transfer data at a speed up to 56,000 bps
(bits per second).

	 n	 A digital subscriber line (DSL) connection also uses a standard phone line, but it can
transfer data 20 times faster than a standard dial-up modem.

	 n	 A cable modem uses the cable TV line maintained by the cable company and is gen-
erally faster than DSL.

	 n	 A network interface card (NIC) is a device that connects a computer to a local area
network (LAN). LANs are commonly used in universities, businesses, and government
agencies. A high-speed NIC called 1000BaseT can transfer data at 1,000 million bits
per second (mbps).

	 n	 Wireless networking is now extremely popular in homes, businesses, and schools.
Every laptop computer sold today is equipped with a wireless adapter that enables
the computer to connect to a local area network and the Internet.

Note
Answers to checkpoint questions are on the Companion Website.

	 1.1	 What are hardware and software?

	 1.2	 List five major hardware components of a computer.

	 1.3	 What does the acronym “CPU” stand for?

	 1.4	 What unit is used to measure CPU speed?

	 1.5	 What is a bit? What is a byte?

	 1.6	 What is memory for? What does RAM stand for? Why is memory called RAM?

	 1.7	 What unit is used to measure memory size?

Insert key

Delete key
Page Up key
Page Down key

screen resolution

pixels

dot pitch

dial-up modem

digital subscriber line (DSL)

cable modem

network interface card (NIC)
local area network (LAN)

million bits per second
(mbps)

✓Point✓Check

M01_LIAN8564_10_GE_C01.indd 24 28/08/14 5:07 pm

1.3  Programming Languages 25

	 1.8	 What unit is used to measure disk size?

	 1.9	 What is the primary difference between memory and a storage device?

1.3  Programming Languages
Computer programs, known as software, are instructions that tell a computer what to do.

Computers do not understand human languages, so programs must be written in a language a
computer can use. There are hundreds of programming languages, and they were developed
to make the programming process easier for people. However, all programs must be converted
into the instructions the computer can execute.

1.3.1  Machine Language
A computer’s native language, which differs among different types of computers, is its
machine language—a set of built-in primitive instructions. These instructions are in the form
of binary code, so if you want to give a computer an instruction in its native language, you
have to enter the instruction as binary code. For example, to add two numbers, you might have
to write an instruction in binary code, like this:

1101101010011010

1.3.2  Assembly Language
Programming in machine language is a tedious process. Moreover, programs written in
machine language are very difficult to read and modify. For this reason, assembly language
was created in the early days of computing as an alternative to machine languages. Assembly
language uses a short descriptive word, known as a mnemonic, to represent each of the
machine-language instructions. For example, the mnemonic add typically means to add num-
bers and sub means to subtract numbers. To add the numbers 2 and 3 and get the result, you
might write an instruction in assembly code like this:

add 2, 3, result

Assembly languages were developed to make programming easier. However, because the
computer cannot execute assembly language, another program—called an assembler—is used
to translate assembly-language programs into machine code, as shown in Figure 1.3.

Key
Point

machine language

assembly language

assembler

Figure 1.3  An assembler translates assembly-language instructions into machine code.

Assembly Source File

...
add 2, 3, result

...

Machine-Code File

...
1101101010011010

...

Assembler

Writing code in assembly language is easier than in machine language. However, it is
still tedious to write code in assembly language. An instruction in assembly language essen-
tially corresponds to an instruction in machine code. Writing in assembly requires that you
know how the CPU works. Assembly language is referred to as a low-level language, because
assembly language is close in nature to machine language and is machine dependent.

low-level language

M01_LIAN8564_10_GE_C01.indd 25 28/08/14 5:07 pm

26 Chapter 1   Introduction to Computers, Programs, and Java

Table 1.1  Popular High-Level Programming Languages

Language Description

Ada Named for Ada Lovelace, who worked on mechanical general-purpose computers. The Ada language was
developed for the Department of Defense and is used mainly in defense projects.

BASIC Beginner’s All-purpose Symbolic Instruction Code. It was designed to be learned and used easily by beginners.

C Developed at Bell Laboratories. C combines the power of an assembly language with the ease of use and
portability of a high-level language.

C++ C++ is an object-oriented language, based on C.

C# Pronounced “C Sharp.” It is a hybrid of Java and C++ and was developed by Microsoft.

COBOL COmmon Business Oriented Language. Used for business applications.

FORTRAN FORmula TRANslation. Popular for scientific and mathematical applications.

Java Developed by Sun Microsystems, now part of Oracle. It is widely used for developing platform-independent
Internet applications.

Pascal Named for Blaise Pascal, who pioneered calculating machines in the seventeenth century. It is a simple,
structured, general-purpose language primarily for teaching programming.

Python A simple general-purpose scripting language good for writing short programs.

Visual Basic Visual Basic was developed by Microsoft and it enables the programmers to rapidly develop graphical user
interfaces.

1.3.3  High-Level Language
In the 1950s, a new generation of programming languages known as high-level languages
emerged. They are platform independent, which means that you can write a program in a high-
level language and run it in different types of machines. High-level languages are English-like
and easy to learn and use. The instructions in a high-level programming language are called
statements. Here, for example, is a high-level language statement that computes the area of a
circle with a radius of 5:

area = 5 * 5 * 3.14159;

There are many high-level programming languages, and each was designed for a specific
purpose. Table 1.1 lists some popular ones.

high-level language

statement

A program written in a high-level language is called a source program or source code.
Because a computer cannot execute a source program, a source program must be translated
into machine code for execution. The translation can be done using another programming tool
called an interpreter or a compiler.

	 n	 An interpreter reads one statement from the source code, translates it to the machine code
or virtual machine code, and then executes it right away, as shown in Figure 1.4a. Note
that a statement from the source code may be translated into several machine instructions.

	 n	 A compiler translates the entire source code into a machine-code file, and the
machine-code file is then executed, as shown in Figure 1.4b.

	1.10	 What language does the CPU understand?

	1.11	 What is an assembly language?

	1.12	 What is an assembler?

	1.13	 What is a high-level programming language?

	1.14	 What is a source program?

source program

source code
interpreter

compiler

✓Point✓Check

M01_LIAN8564_10_GE_C01.indd 26 28/08/14 5:07 pm

1.4  Operating Systems 27

	1.15	 What is an interpreter?

	1.16	 What is a compiler?

	1.17	 What is the difference between an interpreted language and a compiled language?

Figure 1.4  (a) An interpreter translates and executes a program one statement at a time. (b) A compiler translates the
entire source program into a machine-language file for execution.

Machine-Code File

...
0101100011011100
1111100011000100

...

High-Level Source File

...
 area = 5 * 5 * 3.1415;

...

(b)

Compiler Executor

High-Level Source File

...
 area = 5 * 5 * 3.1415;

...

(a)

Interpreter
Output

Output

1.4  Operating Systems
The operating system (OS) is the most important program that runs on a computer.
The OS manages and controls a computer’s activities.

The popular operating systems for general-purpose computers are Microsoft Windows, Mac
OS, and Linux. Application programs, such as a Web browser or a word processor, cannot
run unless an operating system is installed and running on the computer. Figure 1.5 shows the
interrelationship of hardware, operating system, application software, and the user.

Key
Point

operating system (OS)

Figure 1.5  Users and applications access the computer’s hardware via the operating system.

User

Application Programs

Operating System

Hardware

The major tasks of an operating system are as follows:

	 n	 Controlling and monitoring system activities

	 n	 Allocating and assigning system resources

	 n	 Scheduling operations

M01_LIAN8564_10_GE_C01.indd 27 28/08/14 5:07 pm

28 Chapter 1   Introduction to Computers, Programs, and Java

1.4.1  Controlling and Monitoring System Activities
Operating systems perform basic tasks, such as recognizing input from the keyboard, sending
output to the monitor, keeping track of files and folders on storage devices, and controlling
peripheral devices, such as disk drives and printers. An operating system must also ensure
that different programs and users working at the same time do not interfere with each other.
In addition, the OS is responsible for security, ensuring that unauthorized users and programs
are not allowed to access the system.

1.4.2  Allocating and Assigning System Resources
The operating system is responsible for determining what computer resources a program
needs (such as CPU time, memory space, disks, input and output devices) and for allocating
and assigning them to run the program.

1.4.3  Scheduling Operations
The OS is responsible for scheduling programs’ activities to make efficient use of system
resources. Many of today’s operating systems support techniques such as multiprogramming,
multithreading, and multiprocessing to increase system performance.

Multiprogramming allows multiple programs to run simultaneously by sharing the same
CPU. The CPU is much faster than the computer’s other components. As a result, it is idle
most of the time—for example, while waiting for data to be transferred from a disk or waiting
for other system resources to respond. A multiprogramming OS takes advantage of this
situation by allowing multiple programs to use the CPU when it would otherwise be idle. For
example, multiprogramming enables you to use a word processor to edit a file at the same time
as your Web browser is downloading a file.

Multithreading allows a single program to execute multiple tasks at the same time. For
instance, a word-processing program allows users to simultaneously edit text and save it to a
disk. In this example, editing and saving are two tasks within the same application. These two
tasks may run concurrently.

Multiprocessing, or parallel processing, uses two or more processors together to per-
form subtasks concurrently and then combine solutions of the subtasks to obtain a solution
for the entire task. It is like a surgical operation where several doctors work together on
one patient.

	1.18	 What is an operating system? List some popular operating systems.

	1.19	 What are the major responsibilities of an operating system?

	1.20	 What are multiprogramming, multithreading, and multiprocessing?

1.5  Java, the World Wide Web, and Beyond
Java is a powerful and versatile programming language for developing software
running on mobile devices, desktop computers, and servers.

This book introduces Java programming. Java was developed by a team led by James Gosling
at Sun Microsystems. Sun Microsystems was purchased by Oracle in 2010. Originally called
Oak, Java was designed in 1991 for use in embedded chips in consumer electronic appliances.
In 1995, renamed Java, it was redesigned for developing Web applications. For the history of
Java, see www.java.com/en/javahistory/index.jsp.

Java has become enormously popular. Its rapid rise and wide acceptance can be traced
to its design characteristics, particularly its promise that you can write a program once
and run it anywhere. As stated by its designer, Java is simple, object oriented, distributed,

multiprogramming

multithreading

multiprocessing

✓Point✓Check

Key
Point

M01_LIAN8564_10_GE_C01.indd 28 28/08/14 5:07 pm

1.6  The Java Language Specification, API, JDK, and IDE 29

interpreted, robust, secure, architecture neutral, portable, high performance, multi-
threaded, and dynamic. For the anatomy of Java characteristics, see www.cs.armstrong.edu/
liang/JavaCharacteristics.pdf.

Java is a full-featured, general-purpose programming language that can be used to develop
robust mission-critical applications. Today, it is employed not only for Web programming but
also for developing standalone applications across platforms on servers, desktop computers,
and mobile devices. It was used to develop the code to communicate with and control the
robotic rover on Mars. Many companies that once considered Java to be more hype than sub-
stance are now using it to create distributed applications accessed by customers and partners
across the Internet. For every new project being developed today, companies are asking how
they can use Java to make their work easier.

The World Wide Web is an electronic information repository that can be accessed on the
Internet from anywhere in the world. The Internet, the Web’s infrastructure, has been around
for more than forty years. The colorful World Wide Web and sophisticated Web browsers are
the major reason for the Internet’s popularity.

Java initially became attractive because Java programs can be run from a Web browser.
Such programs are called applets. Applets employ a modern graphical interface with but-
tons, text fields, text areas, radio buttons, and so on, to interact with users on the Web and
process their requests. Applets make the Web responsive, interactive, and fun to use. Applets
are embedded in an HTML file. HTML (Hypertext Markup Language) is a simple scripting
language for laying out documents, linking documents on the Internet, and bringing images,
sound, and video alive on the Web. Today, you can use Java to develop rich Internet appli-
cations. A rich Internet application (RIA) is a Web application designed to deliver the same
features and functions normally associated with deskop applications.

Java is now very popular for developing applications on Web servers. These applications
process data, perform computations, and generate dynamic Web pages. Many commercial
Websites are developed using Java on the backend.

Java is a versatile programming language: you can use it to develop applications for desk-
top computers, servers, and small handheld devices. The software for Android cell phones is
developed using Java.

	1.21	 Who invented Java? Which company owns Java now?

	1.22	 What is a Java applet?

	1.23	 What programming language does Android use?

1.6  The Java Language Specification, API, JDK, and IDE
Java syntax is defined in the Java language specification, and the Java library is
defined in the Java API. The JDK is the software for developing and running Java
programs. An IDE is an integrated development environment for rapidly developing
programs.

Computer languages have strict rules of usage. If you do not follow the rules when writing a
program, the computer will not be able to understand it. The Java language specification and
the Java API define the Java standards.

The Java language specification is a technical definition of the Java programming
language’s syntax and semantics. You can find the complete Java language specification at
http://docs.oracle.com/javase/specs/.

The application program interface (API), also known as library, contains predefined
classes and interfaces for developing Java programs. The API is still expanding. You can
view and download the latest version of the Java API at http://download.java.net/jdk8/docs/api/.

✓Point✓Check

Key
Point

Java language specification

API

library

M01_LIAN8564_10_GE_C01.indd 29 28/08/14 5:07 pm

30 Chapter 1   Introduction to Computers, Programs, and Java

Java is a full-fledged and powerful language that can be used in many ways. It comes in
three editions:

	 n	 Java Standard Edition (Java SE) to develop client-side applications. The applica-
tions can run standalone or as applets running from a Web browser.

	 n	 Java Enterprise Edition (Java EE) to develop server-side applications, such as Java
servlets, JavaServer Pages (JSP), and JavaServer Faces (JSF).

	 n	 Java Micro Edition (Java ME) to develop applications for mobile devices, such as
cell phones.

This book uses Java SE to introduce Java programming. Java SE is the foundation upon
which all other Java technology is based. There are many versions of Java SE. The latest,
Java SE 8, is used in this book. Oracle releases each version with a Java Development Toolkit
(JDK). For Java SE 8, the Java Development Toolkit is called JDK 1.8 (also known as Java 8
or JDK 8).

The JDK consists of a set of separate programs, each invoked from a command line, for
developing and testing Java programs. Instead of using the JDK, you can use a Java devel-
opment tool (e.g., NetBeans, Eclipse, and TextPad)—software that provides an integrated
development environment (IDE) for developing Java programs quickly. Editing, compiling,
building, debugging, and online help are integrated in one graphical user interface. You simply
enter source code in one window or open an existing file in a window, and then click a button
or menu item or press a function key to compile and run the program.

	1.24	 What is the Java language specification?

	1.25	 What does JDK stand for?

	1.26	 What does IDE stand for?

	1.27	 Are tools like NetBeans and Eclipse different languages from Java, or are they
dialects or extensions of Java?

1.7  A Simple Java Program
A Java program is executed from the main method in the class.

Let’s begin with a simple Java program that displays the message Welcome to Java! on the
console. (The word console is an old computer term that refers to the text entry and display
device of a computer. Console input means to receive input from the keyboard, and console
output means to display output on the monitor.) The program is shown in Listing 1.1.

Listing 1.1  Welcome.java
1 public class Welcome {
2 public static void main(String[] args) {
3 // Display message Welcome to Java! on the console
4 System.out.println("Welcome to Java!");
5 }
6 }

Note that the line numbers are for reference purposes only; they are not part of the program.
So, don’t type line numbers in your program.

Java SE, EE, and ME

Java Development
Toolkit (JDK)

JDK 1.8 = JDK 8

Integrated development
environment

✓Point✓Check

Key
Point

what is a console?
console input

console output

class
main method
display message

VideoNote
Your first Java program

line numbers

Welcome to Java!

M01_LIAN8564_10_GE_C01.indd 30 28/08/14 5:07 pm

